ExAO

L'effet de serre

Une manipulation pour illustrer le chapitre «cultures sous abris», de la classe de seconde ; mais aussi une initiation à l'ExAO pour les élèves.

PRINCIPE

On mesure en continu l'évolution de la température au fond d'une enceinte (une cuvette à dissection), éclairée par une lampe. Cette enceinte est fermée par une plaque de verre ou bien laissée à l'air libre.

MATÉRIEL

Interface: ESAO 3 (Jeulin)

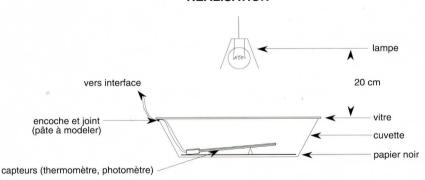
Capteurs: Thermomètre et photomètre

Sonde à dioxygène nécessaire seulement pour le fonctionnement du logiciel

Logiciel: BIOCELL

Matériel complémentaire : Cuvette à dissection, avec encoches pour les fils des sondes

Plaque de verre (couvercle de la cuvette)


Lampe à dissection

Papier noir (absorbe les rayons infrarouges courts et renvoie

les IR longs thermiques

Pâte à modeler

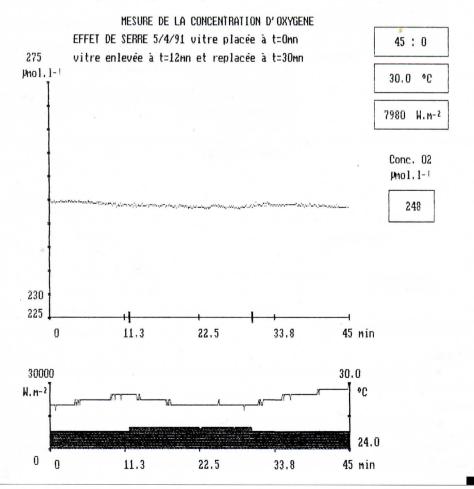
RÉALISATION

Réglages

• Choisir les échelles pour les ordonnées, température et éclairement, telles que les courbes ne se superposent pas.

Mesures

- Programmer une durée suffisante pour avoir des écarts significatifs, par exemple 30 à 45 minutes.
- Commencer les mesures (après stabilisation de la température), en laissant le couvercle pendant 10 minutes, puis en l'enlevant (10 min), puis en le replaçant...


RÉSULTATS

La courbe de températures est en position supérieure, l'évolution de l'éclairement est figuré en noir. Il apparaît nettement que la température augmente sous serre de 28,5°C à 29,5°C; le fait d'enlever la vitre sans modifier la source de lumière provoque une baisse aussi régulière de la température jusqu'à 28,5°C. En replaçant la vitre, la température augmente à nouveau, jusqu'à 30°C.

Il est intéressant de noter que la pose de la vitre entraîne une diminution de l'énergie lumineuse incidente (réflexion due au verre) : ce n'est donc pas une quantité supplémentaire de lumière qui a échauffé l'enceinte, mais un changement de qualité des radiations (davantage d'infrarouges longs thermiques).

Remarques:

- la sensibilité faible de la sonde température $(0,5^{\circ}C)$ provoque des variations en dents de scie sur le graphique ;
- l'utilisation d'autres papiers colorés peut permettre d'observer les effets de quantités différentes d'infrarouges thermiques renvoyés.

